39 research outputs found

    Assembling strategies in extrinsic evolvable hardware with bi-directional incremental evolution

    Get PDF
    Bidirectional incremental evolution (BIE) has been proposed as a technique to overcome the ”stalling” effect in evolvable hardware applications. However preliminary results show perceptible dependence of performance of BIE and quality of evaluated circuit on assembling strategy applied during reverse stage of incremental evolution. The purpose of this paper is to develop assembling strategy that will assist BIE to produce relatively optimal solution with minimal computational effort (e.g. the minimal number of generations)

    Architectural aspects of self-aware and self-expressive computing systems: from psychology to engineering

    Get PDF
    Work on human self-Awareness is the basis for a framework to develop computational systems that can adaptively manage complex dynamic tradeoffs at runtime. An architectural case study in cloud computing illustrates the framework's potential benefits

    Providing Self-Aware Systems with Reflexivity

    Full text link
    We propose a new type of self-aware systems inspired by ideas from higher-order theories of consciousness. First, we discussed the crucial distinction between introspection and reflexion. Then, we focus on computational reflexion as a mechanism by which a computer program can inspect its own code at every stage of the computation. Finally, we provide a formal definition and a proof-of-concept implementation of computational reflexion, viewed as an enriched form of program interpretation and a way to dynamically "augment" a computational process.Comment: 12 pages plus bibliography, appendices with code description, code of the proof-of-concept implementation, and examples of executio

    Reduced heart rate variability during mania in a repeated naturalistic observational study

    Get PDF
    BackgroundBipolar disorder (BD) is a chronic recurrent mood disorder associated with autonomic nervous system (ANS) dysfunction, indexed by heart rate variability (HRV). Changes in HRV between mood states are sparsely studied longitudinally. We aimed to compare HRV of hospitalized manic individuals with their own euthymic selves in a naturalistic observational study.Methods34 individuals were included, of which 16 were lost to follow-up. Ultimately 15 patients provided reliable heart rate data in both a manic and euthymic state, using photoplethysmography (PPG) sensor wristbands overnight. We calculated HRV measures Root Mean Square of Successive Differences (RMSSD), High-frequency (HF: 0.15–0.40 Hz), Low-frequency (LF: 0.40–0.15 Hz), Very low-frequency (VLF: 0.0033–0.04 Hz), Total power and Sample Entropy in 5-min night-time resting samples. We compared HRV measures by mood state within individuals using paired t-tests and linear regression to control for age and sex.ResultsHRV was lower in the manic state when compared to the euthymic state for all HRV metrics (p ≤ 0.02), with large to medium effect sizes (g = 1.24 to 0.65). HRV changes were not significantly affected by age or sex.ConclusionThis longitudinal study provides evidence of lower HRV in manic states compared to euthymia, indicating an association between ANS dysregulation and changes in bipolar mood state. This corroborates previous cross-sectional studies, although the association may be less clear or reversed in hypomanic states. Further investigation in larger longitudinal samples is warranted

    Recognizing speed limit sign numbers by evolvable hardware

    No full text
    Abstract. An automatic traffic sign detection system would be important in a driver assistance system. In this paper, an approach for detecting numbers on speed limit signs is proposed. Such a system would have to provide a high recognition performance in real-time. Thus, in this paper we propose to apply evolvable hardware for the classification of the numbers extracted from images. The system is based on incremental evolution of digital logic gates. Experiments show that this is a very efficient approach.

    A cost estimating framework for electronic, electrical and electromechanical (EEE) components obsolescence within the use-oriented product-service systems contracts

    Get PDF
    This paper provides a cost estimating framework for electrical, electronic and electromechanical (EEE) components obsolescence, which represents the main source of obsolescence issues, owing to the increasingly short life cycle of these types of component. The framework comprises several areas: component complexity levels, obsolescence management levels, obsolescence resolution profiles and obsolescence cost metrics. Several studies, based on the literature and on interaction with numerous obsolescence management experts from industry, have been employed in this research, following a systematic approach. The framework is able to estimate the non-recurring cost of obsolescence during the contracted period within the inservice phase. This is based on the information available at the bidding stage concerning the product breakdown structure (PBS) and the obsolescence management strategy deployed. This framework has been validated at four different UK organizations in the defence and aerospace sectors using seven case studies, one of which is presented in this paper in detail
    corecore